

MOSAIC-5G.io A community led consortium

Leveraging an Ecosystem of 5G services

What is FlexRAN?

A Flexible and Programmable Platform for Software-Defined Radio Access Networks

FlexRAN objectives

Centralized and distributed RAN control

- Real-time and flexible coordination
- Abstraction and programmability of reusable network functions via extendable APIs
- Support of RAN, Content and Device/Provider optimization use cases

FlexRAN features

RAN Control and Data plane Separation

- □ Allow operators to open RAN to authorized third-parties
- Deploy innovative applications for mobile subscribers, enterprises and vertical segments

Centralized & Real-time Control

- □ Ease BS coordination and simplify sophisticated control mechanisms
- □ Support real-time control applications with stringent time constraints (e.g., MAC scheduler)

Abstraction and Virtualized Control Functions

- Modular structure and well-defined interfaces
- □ "On-the-fly" upgrade of any control function without affecting the rest of the system

Control Delegation & Policy Reconfiguration

- □ Delegate control functions from FlexRAN controller to BSs at runtime
- □ *"On-the-fly"* reconfiguration of the functions parameters

FlexRAN schema

- Plug & Play control apps
 - ✓ SDK for App-to-App and App-to-RAN

FlexRAN Master Controller

- Top level controller/orchestrator
- eNB/UE state and resources

FlexRAN Runtime

- Abstraction and programmability of network functions
- Extendable RAN APIs
- Virtualized resources and states
- Local controller
- FlexRAN Protocol
 - Statistics
 - Configurations
 - Commands
 - Event Trigger
 - Control delegation

FlexRAN implementation

- FlexRAN Realtime Controller (aks as RTC)
 - □ From scratch in C++ (a test version in Python)
 - □ x64 Linux support
 - □ Support hard real-time and soft real-time mode of operation
 - □ Software release under <u>Apache V2.0 license</u>
- FlexRAN Runtime (aka Agent)
 - $\hfill\square$ Developed in C
 - □ Build on the top of OpenAirInterface (OAI) LTE software platform
 - □ Local RAN control
 - □ Software release under <u>OAI Public License V1.1</u>
- FlexRAN Protocol: Protobuf

FlexRAN API

API	Target	Direction	Example	Applications
Configuration (Synchronous)	eNB, UE, Slice	Controller \rightarrow RAN	 UL/DL cell bandwidth, Reconfigure DRB, RSRP/RSRQ/TA 	 Monitoring Reconfiguration SON → cognition
Stats, Measurements (Asynchronous)	eNB, UE, Slice	$RAN \rightarrow Controller$	 CQI measurements SINR measurements UL/DL performance 	 Monitoring, Optimization, SON → cognition
Commands (Synchronous)	Agent	Controller \rightarrow RAN	Scheduling decisionsAdmission controlHandover initiation	 Hard real-time control Soft real-time control SON → cognition
Event Trigger	Master	RAN \rightarrow Controller	 Per TTI UE attachment Scheduling request Slice created/destroyed 	Monitoring,Control actions
Control delegation	Agent	$Controller \to RAN$	Update DL/UL schedulingUpdate HO algorithm	Programmability,Multi-service

Real-time application

FlexRAN Master Controller

Control Delegation and Reconfiguration

FlexRAN apps

- RAN programmability and re-configurability
- RAN Sharing & Virtualization
- Mobility Management
- Network Slicing
- Spectrum Management
- RAN Data Mining and Analysis
- RAN-aware video optimization
- Dynamic function split and changes in service definition
- Centralized Coordinated Scheduling and Interference management

FlexRAN scalability (1/2)

Agent-to-controller overhead

Controller-to-agent overhead

FlexRAN scalability (2/2)

CPU Utilization

PoC Setup: RAN Slicing demonstrated at ITU workshop

RAN Slicing sample results

- ✓ 3 slices
- ✓ Slice-specific scheduling
- ✓ Dynamic slice resource management
- ✓ Enforce different policies over time

PoC Setup: RAN and Spectrum Sharing Demo

FlexRAN evaluation results

- Minimal memory and CPU overhead at BS with FlexRAN runtime support
- Lightweight and scalable operation of FlexRAN Master Controller
- No service disruption due to control delegation
- Adaptable centralized scheduling in the presence of Master-Agent communication latency

Useful links

RAVEN

Slicing Cloud RAN

FlexRAN platform

How to build a RAN slicing platform?

Mosaic5G-Contact

E-mail: <u>flexran_user@lists.eurecom.fr</u> Website: <u>mosaic-5g.io/flexran</u>

Twitter: @mosaic5g

